The Theoretical Development of a New High Speed Solution for Monte Carlo Radiation Transport Computations
نویسندگان
چکیده
The Theoretical Development of a New High Speed Solution for Monte Carlo Radiation Transport Computations. (December 2005) Alexander Samuel Pasciak, B.S., University of Washington Chair of Advisory Committee: Dr. John R. Ford Advancements in parallel and cluster computing have made many complex Monte Carlo simulations possible in the past several years. Unfortunately, cluster computers are large, expensive, and still not fast enough to make the Monte Carlo technique useful for calculations requiring a near real-time evaluation period. For Monte Carlo simulations, a small computational unit called a Field Programmable Gate Array (FPGA) is capable of bringing the power of a large cluster computer into any personal computer (PC). Because an FPGA is capable of executing Monte Carlo simulations with a high degree of parallelism, a simulation run on a large FPGA can be executed at a much higher rate than an equivalent simulation on a modern single-processor desktop PC. In this thesis, a simple radiation transport problem involving moderate energy photons incident on a three-dimensional target is discussed. By comparing the theoretical evaluation speed of this transport problem on a large FPGA to the evaluation speed of the same transport problem using standard computing techniques, it is shown that it is possible to accelerate Monte Carlo computations significantly using FPGAs. In fact, we have found that our simple photon transport test case can be evaluated in excess of 650 times faster on a large FPGA than on a 3.2 GHz Pentium-4 desktop PC running
منابع مشابه
Comparison of MCNP4C, 4B and 4A Monte Carlo codes when calculating electron therapy depth doses
ABSTRACT Background: accurate methods of radiation therapy dose calculation. There are different Monte Carlo codesfor simulation of photons, electrons and the coupled transport of electrons and photons. MCNPis a general purpose Monte Carlo code that can be used for electron, photon and coupledphoton-electron transport.Monte Carlo simulation of radiation transport is considered to be one of the ...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کاملCharacteristics of lead glass for radiation protection purposes: A Monte Carlo study
Background: Lead glass has a wide variety of applications in radiation protection. This study aims to investigate some characteristics of lead glass such as the γ-ray energy-dependent mass and linear attenuation coefficients, the half-value layer thickness, and the absorbed dose distribution for specific energy. Materials and Methods: The attenuation parameters of different lead glass types aga...
متن کاملApplication of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom
Background: In treating patients with radiation, the degree of accuracy for the delivery of tumor dose is recommended to be within ± 5% by ICRU in report 24. The experimental studies have shown that the presence of low-density inhomogeneity in areas such as the lung can lead to a greater than 30% change in the water dose data. Therefore, inhomogeneity corrections should be used in treatment pla...
متن کاملMonte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کامل